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ABSTRACT: We have synthesized conductive nanocompo-
sites composed of multiwalled carbon nanotubes (MWCNTs)
and Au nanoparticles (NPs). The Au NPs with an average size
of approximately 4.3 nm are uniformly anchored on the
MWCNT. After being exposed to microwave (MW) plasma
irradiation, the anchored Au NPs melt and fuse, leading to
larger aggregates (34 nm) that can connect the MWCNT
forming a three-dimensional conducting network. The
formation of a continuous MWCNT network can produce
more a conductive pathway, leading to lower sheet resistance.
When the Au-MWCNT is dispersed in the highly conductive
polymer, poly(ethylene dioxythiophene):polystyrenesulfonate (PEDOT:PSS), we can obtain solution-processable composite
formulations for the preparation of a flexible transparent electrode. The resulting Au-MWCNT/PEDOT:PSS hybrid films
possess a sheet resistance of 51 Ω/sq with a transmittance of 86.2% at 550 nm. We also fabricate flexible organic solar cells and
electrochromic devices to demonstrate the potential use of the as-prepared composite electrodes. Compared with the indium tin
oxide-based devices, both the solar cells and electrochromic devices with the composites incorporated as a transparent electrode
deliver comparable performance.
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1. INTRODUCTION

Recently, flexible organic optoelectronics have attracted a great
deal of attention because of their lightness, thinness, and
excellent mechanical flexibility.1−3 The transparent electrode
for flexible optoelectronics should satisfy special requirements,
such as being bendable, having solvent resistance, and being
highly conductive and transparent. Currently, indium tin oxide
(ITO) films are most commonly used for the transparent
electrode. However, it has many drawbacks, including its high
price, complicated process requirements, sensitivity toward acid
environments, and poor adhesion with organic and polymeric
materials. It has been reported that approximately 37−50% of
the material cost for polymer solar cells is from ITO.4

Therefore, ITO cannot be used as the transparent electrode
for next-generation optoelectronic devices.
As one of the most successful conducting polymers,

PEDOT:PSS has attracted a great deal of interest over the
past two decades.5−8 Its high conductivity and transparency,
low sheet resistance, and versatility of processing from an
aqueous solution make it an attractive choice for the
transparent electrode for organic optoelectronics. Recently, a
couple of investigations have been reported the enhancement
of the conductivity of PEDOT:PSS. Kim et al. found the

conductivity of PEDOT:PSS can be enhanced by ∼2 orders in
magnitude via addition of dimethyl sulfoxide (DMSO) or
dimethylformamide (DMF).9 Other organic compounds such
as ethylene glycol,10 polyalcohols,11−17 an anionic surfac-
tant,18,19 and an organic acid20−22 were also investigated for
the conductivity enhancement of PEDOT:PSS. It has been
concluded that these additives can enhance the phase
separation between the conductive PEDOT and the insulating
PSS domains, leading to a more PEDOT conductive pathway.
In particular, composites of carbon-based materials and

PEDOT:PSS have attracted a great deal of attention because of
the potential creation of synergistic effects on the thermal and
electrical properties. To further improve the conductivity and
reduce the sheet resistance of PEDOT:PSS, many researchers
have studied carbon nanotube (CNT)/PEDOT composite
films.23−25 The conductivity of the CNT/PEDOT composites
is determined significantly by the formation of a CNT
conducting pathway that depends on the CNT concentration
and dispersibility within the polymer matrix. However, the
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higher CNT concentration would dramatically decrease the
transmittance. Moreover, the common surfactants used for
dispersing the carbon-based materials are nonconductive. These
surfactants also impede the formation of the PEDOT and CNT
continuous pathway.
To overcome these problems, in this work, we demonstrated

the preparation of Au NPs supported on MWCNTs by using a
simple polyol process with surfactant-assisted sonication. Via
probe sonication treatment, the Au-MWCNT composites can
be uniformly dispersed with PEDOT:PSS without precipitation.
The produced homogeneous Au-MWCNT/PEDOT:PSS
composite solution can form a uniform film with a smooth
surface via a spin-coating method. To create a more MWCNT
conducting pathway within the PEDOT:PSS matrix, we treat
the composites with MW plasma irradiation, which can provide
rapid heating and a uniform temperature for fusing and
coalescing the Au NPs into large Au NPs. The coalesced Au
NPs can act as conducting bridges to connect the MWCNTs,
leading to more intra- and interjunctions between the
MWCNTs. The resulting composite films exhibit improved
optoelectronic properties, and they possess a sheet resistance of
51 Ω/sq with a transmittance of 86.2% at 550 nm. Finally, we
also fabricated organic solar cells and electrochromic devices to
demonstrate the potential use of composite electrodes.

2. EXPERIMENTAL SECTION
2.1. Preparation of Au-MWCNT Composites. Initially, 100 mg

of MWCNT and 300 mg of sodium dodecyl sulfate were mixed with
100 mg of deionized water in a 500 mL flask to produce a
homogeneous solution using probe-type sonication (Sonics VCX750,
supplied by Sonics & Materials, Inc.). For the polyol process, the as-
prepared Au organosol, containing 43.4 mg of HAuCl4 dissolved in
100 mL of ethylene glycol, was added dropwise to the MWCNT
dispersed solution described above under a nitrogen atmosphere.
Subsequently, the mixture was stirred and heated to 105 °C at a
heating rate of 2 °C/min, and it was kept at 105 °C for 2 h. Finally, the
Au-MWCNT composites were collected by filtration; they were then
washed with copious amounts of ethyl alcohol and dried in vacuum at
80 °C for 8 h. MW plasma irradiation was performed by a system that
consisted of a MW oven with two drilled holes on the upper part and a
quartz chamber made of Pyrex, which was connected to an argon
cylinder. The air pressure was controlled in the range of 0.1−2.0 Torr,
and the operation time was fixed at 3 min.

2.2. Preparation of a Au-MWCNT/PEDOT:PSS Solution. The
modified PEDOT:PSS (Clevios PH1000) was prepared by adding
DMSO (5 vol %) to the as-bought PEDOT:PSS. The modified
PEDOT:PSS was filtered (0.45 μm, PVDF) at room temperature.
Subsequently, different amounts of Au-MWCNT composites (0−0.4
wt %) were added to the PEDOT:PSS solution. With probe-type
sonication, the Au-MWCNT can be dispersed in the PEDOT:PSS
uniformly without precipitation. For the dispersed process, different
sonication powers and times were used at 20 °C (20% and 30 s, 30%

Figure 1. Synthesis of Au-MWCNT composites. (a) Representative TEM image of Au NPs attached to MWCNTs. (b) Histograms of the size
distribution of Au NPs. (c) EDX pattern of as-produced Au-MWCNT composites, indicating the atomic percentage of Au. (d) XRD pattern of the
pristine MWCNT and Au-MWCNT composites.
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and 2.5 min, 40% and 15 min, 30% and 2.5 min, and 40% and 5 min,
respectively).
2.3. Characterization. A JEOL 2010 transmission electron

microscope (TEM) was used to examine the morphology of the Au-
MWCNT composites. Elemental analysis was performed with an
energy-dispersive X-ray spectroscopy (EDX) system coupled to the
TEM. The transmittance spectra of the carbon composite films were
recorded using a Jasco-V-670 UV−vis spectrophotometer. The surface
morphologies of the carbon composite films were investigated using
atomic force microscopy (AFM) (Digital Instrument NS 3a controller
equipped with a D3100 stage) and scanning electron microscopy
(SEM) (Hitachi S-4700). The sheet resistance of the composites was
measured using the four-point probe with a Keithley 2400 sourcemeter
current source. The work function of the electrode was measured by
X-ray photoelectron spectrometry (XPS/UPS) using a PHI 5000
VersaProbe (ULVAC-PHI, Chigasaki, Japan) system with He(I) (hν =
21.2 eV) as the energy source. Spectroelectrochemical data were
recorded using a Shimadzu UV-1601PC spectrophotometer.
2.4. Fabrication and Characterization of Organic Solar Cells.

The polymer solar cells consisted of a layer of the poly(3-
hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester
(P3HT:PCBM) blend thin film sandwiched between the Au-
MWCNT/PEDOT:PSS electrode and a metal cathode. Precleaned
glass substrates were treated with O2 plasma to activate the surface.
Typically, the Au-MWCNT/PEDOT:PSS electrode was spin-coated at
2000 rpm for 60 s. The electrodes were then annealed on a hot plate at
110 °C for 20 min. Subsequently, the active layer [P3HT:PCBM, 1:1
(w/w); 2% in dichlorobenzene] was then spin-coated by the slow-
growth method.26 Finally, thermal evaporation of Al and Ca provided
the reflective cathodes. Solar cell testing was performed inside a
glovebox under simulated AM 1.5G irradiation (100 W/cm2) using a
Xe lamp-based solar simulator (Thermal Oriel 1000W). The light
source was a 450 W Xe lamp (Oriel Instrument, model 6266)
equipped with a water-based IR filter (Oriel Instrument, model
6123NS). The light output from the monochromator (Oriel
Instrument, model 74100) was focused onto the tested solar cell.
Electrical characteristics were measured at room temperature under a

N2 atmosphere using an HP 4156C apparatus placed within a
glovebox.

3. RESULTS AND DISCUSSION

The TEM was used to monitor the morphology of the Au-
MWCNT as shown in Figure 1a. Morphological observation
illustrates the Au NPs are uniformly attached to MWCNTs and
after the modification still preserved the structure of
MWCNTs. The anchored Au NPs have spherical shapes and
narrow size ranges. It is worth mentioning that many Au NPs
were formed in the cross-linked Au-MWCNT composites. It is
believed that these Au NPs can enhance the intrajunctions
between the Au-MWCNT composites, resulting in improved
conductivity. As shown in Figure 1b, the particle sizes of Au
NPs ranged between 1.8 and 6.9 nm and their average size is
around 4.3 nm. Furthermore, the elementary composition of
the Au-MWCNT composites is confirmed by EDX analysis
(Figure 1c). The result shows that the chemical composition of
the Au-MWCNT is 9.84 wt % Au. The XRD measurement was
also performed to further confirm the formation of Au NPs. As
shown in Figure 1d, two peaks located at 38° and 44° can be
found for the Au-MWCNT composites, which correspond to
the (111) and (200) crystal planes, respectively. No character-
istic peaks of other impurities are found. This result suggests
the Au NPs are uniformly distributed on the MWCT surface.
To improve the electrical and mechanical properties of Au-

MWCNT composites by enhancing the connection between
the MWCNTs, in this study, we annealed the Au NPs under
MW plasma irradiation. Panels a and b of Figure 2 show the
SEM image and the histograms of the representative Au-
MWCNT composites after plasma treatment, respectively.
Compared with the sample without plasma annealing, it can be
seen the Au NPs attached to the MWCNT (34 nm) are larger
than that of the as-prepared NPs (4.3 nm). During plasma

Figure 2. (a) SEM image of the representative Au-MWCNT composites after MW plasma treatment. (b) Corresponding particle size distribution of
Au NPs. (c) Schematic illustration of the Au NPs attached to MWCNTs after MW plasma irradiation.
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irradiation, the Au NPs melt and fuse, leading to larger
aggregates. As shown in Figure 2c, this coalescent process offers
a stronger, more cohesive metallic Au-MWCNT adhesion,
where the Au NPs also serve as a junction bridge between the
MWCNTs. This facilitates the formation of a three-dimensional
composite network that reduces the energy barrier for electron
transport. We believe that the plasma treatment can enhance
not only the conductivity but also the mechanical strength.
For the application of the transparent electrode, CNT is an

attractive candidate because of its high conductivity, stability,
and optical transmittance. However, CNT has an intrinsic
problem because it is difficult to disperse and use to form a
smooth film. The CNT without full dispersion would easily
form coarse CNT bundles, leading to an uneven surface
morphology.27 In a transparent electrode, such bundles would
be problematic for device fabrication because they might
protrude through the active layers and, thereby, result in
shortening. Recently, several types of stabilizers have been used
to disperse carbon nanotubes such as surfactants,28−31

polymers,32,33 and biomaterials.34,35 Most dispersants are

electrical insulators that hinder the transport of electrons
across the junctions. In this study, PEDOT:PSS, doped with
DMSO, was used to disperse MWCNTs in water. The
PEDOT:PSS can act as a surfactant to disperse MWCNT
and prevent it from settling and aggregating.36−38 Moreover,
the PEDOT:PSS can also fill the space between the MWCNT
network forming a fully continuous, conductive composite film.
Figure 3a shows the measured ζ potential of pristine MWCNTs
and MWCNTs dispersed with sodium dodecyl sulfate (SDS)
and PEDOT:PSS. The ζ potentials of the MWCNT/SDS,
PEDOT:PSS, MWCNT/PEDOT:PSS, and Au-MWCNT/
PEDOT:PSS were 61.3, 80.1, 76.4, and 71.3 mV, respectively.
Such a high ζ potential of the MWCNT/PEDOT:PSS indicates
that the MWCNT can be stabilized within the PEDOT:PSS.39

It should be noted that the PSS content usually is 2.5 times
higher than the PEDOT content. Excess PSS has also been
reported to be a good dispersant for CNT.40 The slight
decrease in the ζ potential of Au-MWCNT/PEDOT:PSS (71.3
mV) compared with that of MWCNT/PEDOT:PSS (76.4 mV)
is due to the higher bulk density contributed from the

Figure 3. Preparation of a Au-MWCNT/PEDOT:PSS suspension. (a) ζ potential of MWCNT in different solutions. (b) Absorption of the Au-
MWCNT/PEDOT:PSS with various Au-MWCNT concentrations. The composite solutions were diluted with water [1:20 (v/v) Au-MWCNT/
PEDOT:PSS:water]. The inset shows the images of the diluted composite solutions. (c) Plot of absorption intensity vs Au-MWCNT concentration.

Figure 4. Transmittances and resistances of the carbon composite films. (a) Transmission spectra of Au-MWCNT/PEDOT:PSS films featuring
different Au-MWCNT contents. (b) Effect of MW plasma and loading amount of Au-MWCNT on sheet resistance of the composite films. Plasma
irradiation can sinter the Au NPs, leading to a better connection between MWCNTs, which provides effective conducting pathways and reduces the
sheet resistance.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.5b03159
ACS Appl. Mater. Interfaces 2015, 7, 11668−11676

11671

http://dx.doi.org/10.1021/acsami.5b03159


decorated Au NPs. Absorption spectroscopy can be used to
further shed light on the dispersibility of the Au-MWCNT/
PEDOT:PSS colloidals. The absorption spectra were recorded
with a UV−vis spectrometer with wavelengths of 300−1000
nm at different concentrations of Au-MWCNT from 0 to 0.4
wt % as shown in Figure 3b. With increasing Au-MWCNT
contents, the absorption of the colloidals increases in the range
between 300 and 1000 nm. The images of the Au-MWCNT/
PEDOT:PSS with various Au-MWCNT contents are also
shown in the inset of Figure 3b. A linear relationship can be
seen in Figure 3c and follows the Lambert−Beer law well,41

suggesting that the Au-MWCNT can form a uniform and stable
colloidal after dispersion in the PEDOT:PSS. The MWCNT/
PEDOT:PSS can remain highly dispersed without precipitation
after centrifugation at 3000 rpm. These results suggest that the
PEDOT:PSS can be applied as a conductive surfactant to
disperse the MWCNT.
We characterized the optical and electrical properties of the

composite films using UV−vis spectroscopy (at normal
incidence) and a four-point probe. Figure 4a shows the
transmittance spectra of ITO and Au-MWCNT/PEDOT:PSS
composites with various MWCNT contents. Even when the
content of MWCNT is 0.4 wt %, the transmittance of the
composite still can be as high as 80% in the range between 400
and 800 nm. Compared with that of the ITO substrate, the
transmittance of the composites is higher in the violet, blue, and
green regions. The transmittance values of the composites with
0, 0.1, 0.2, 0.3, and 0.4 wt % Au-MWCNT are 92.1, 90.8, 89.1,
87.3, and 86.2%, respectively, at 550 nm, including the glass
substrate. Figure 4b shows the variation of sheet resistance for
the composite films with different Au-MWCNT contents. It
can be seen that the sheet resistance decreases with an
increasing content of Au-MWCNT. Moreover, the sheet
resistance for the Au-MWCNT/PEDOT:PSS can be further
decreased dramatically after MW plasma treatment. For the
composite film with 0.4 wt % Au-MWCNT, the sheet resistance
reaches as low as 51 Ω/sq, after plasma irradiation. This value is
much lower than that of the sample without treatment (158 Ω/
sq). It should be noted that the sheet resistance of pristine
PEDOT:PSS remains unchanged even after MW plasma
irradiation. This indicates the enhancement of conductivity is
completely contributed by the coalescence of the Au NPs
induced from the plasma treatment. The larger Au NPs play as
a conductive bridge to connect the MWCNTs, thereby
producing the three-dimensional MWCNT network within
the PEDOT:PSS matrix. As a result, the favorable morphology
is effective in increasing the number of charge transfer pathways
and minimizing the barrier for charge transfer between the
MWCNTs, which in turn reduces the sheet resistance.
We also used AFM to characterize the surface topography of

the PEDOT:PSS and Au-MWCNT/PEDOT:PSS (0.4 wt %).
The morphology of PEDOT:PSS reveals a smooth surface
without any features (Figure 5a) The AFM profile reveals that
the root-mean-square (rms) surface roughness of the
PEDOT:PSS is approximately 1.13 nm. In contrast, for the
hybrid, the morphology exhibits many MWCNTs running
across the surface as shown in Figure 5b. It can be seen that the
MWCNTs are well-dispersed without aggregation and
distributed on the surface uniformly. The rms roughness of
the composite only slightly increases from 1.13 to 4.12 nm.
Such an even surface, transparency, and high conductivity make
the composites alternatives to ITO and other transparent
conducting materials.

To investigate the flexibility of the Au-MWCNT/PE-
DOT:PSS electrodes, we coated the composites on the PET
substrate and used the sheet resistance as a parameter to
explore the stability of the Au-MWCNT/PEDOT:PSS and
ITO/PET under various bending conditions. Figure 6a displays

the correlation between the bending angle and conductance for
the composite and ITO/PET. ITO/PET underwent an
irreversible loss of electrical conductivity because of the
propagation cracks throughout its crystalline networks. The
corresponding optical images are also shown in the inset.
Meanwhile, the composite film exhibits comparable sheet
resistance before and after bending test cycles by virtue of its
high flexibility and mechanical strength. The sheet resistance of
the ITO film increased from 24 to 743 Ω/sq after blending at
60°, while Au-MWCNT/PEDOT:PSS reveals similar values
(∼51 Ω/sq). In light of mechanical measurements, the as-
synthesized hybrid composite film evidently possesses a much-
enhanced mechanical flexibility versus those of ITO films and is
well suited for conductive platforms for flexible electronics. The
images of the composite films under bending are also shown in
panels b and c of Figure 6.
To improve our understanding of the physical property of

the as-prepared composites, we measured the shift in the
secondary electron cutoff of the composite films to determine

Figure 5. Representative images of the surface morphologies of the
carbon-based films. (a) Pristine PEDOT:PSS film. (b) Au-MWCNT/
PEDOT:PSS composite film (0.4 wt %).

Figure 6. Bending tests of films of ITO and Au-MWCNT/
PEDOT:PSS on flexible PET substrates. (a) Sheet resistances of Au-
MWCNT/PEDOT:PSS and ITO films on PET substrates, plotted
with respect to the bending angle. The inset is the corresponding
optical image for the ITO/PEDT before and after bending. (b and c)
Representative photographs of a Au-MWCNT/PEDOT:PSS flexible
electrode subjected to bending.
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their work function. As shown in Figure 7a, we observe the
values of the work function (5.2 eV) for the Au-MWCNT/
PEDOT:PSS (0.4 wt %) and pristine PEDOT:PSS are almost
the same. The results indicate the composite is suitable for not
only transparent electrode but also the hole collection layer for
organic solar cells because of its high work function. Therefore,
to apply the composite as a transparent electrode in an organic
solar cell, P3HT:PCBM-based solar cells were fabricated. The
schematic energy levels of Au-MWCNT/PEDOT:PSS together
with others materials used in our study are also shown in Figure
7b. Figure 7c presents the current−voltage (J−V) curves of
solar cells. For the purpose of comparison, the devices based on
ITO (20 Ω/sq) and Au-MWCNT/PEDOT:PSS (0.3 wt %) as
a transparent electrode were both fabricated. The Au-
MWCNT/PEDOT:PSS-based device delivered a short-circuit
current (JSC) of 9.87 mA/cm2; with an open-circuit voltage
(VOC) of 0.60 V and a fill factor (FF) of 65.3%, the power
conversion efficiency (PCE) was 3.85%. This value can rival
that of the ITO-based device (4.10%). To investigate the effect
of bending on the cell performance, we also fabricated the
organic solar cells on the PET substrate with the composites as
an electrode. As shown in Figure 7d, the performance was
evaluated up to 50 bending cycles, and the PCE values of the
device remained almost unchanged. The negligible variation in
cell performance indicates that the Au-MWCNT/PEDOT:PSS

is flexible and does not suffer from severe cracks or defect
formation under the bending conditions.
The adhesion between the conductive layer and substrate is

also an important issue for the transparent electrode to be used
in aqueous media, especially in an electrochemical system. In
this study, we also evaluated the feasibility of applying the
composite as a transparent electrode for the electrochromic
device. Figure 8a presents the optoelectrochemical spectral
series for the PEDOT electrochemically deposited on the Au-
MWCNT/PEDOT:PSS (0.3 wt %). It can be seen that the
PEDOT can be successfully stepped between 1.0 and −1.0 V
on the conductive composites. Figure 8b displays the switching
of the PEDOT between 1.0 and −1.0 V at an interval of 10 s in
0.1 M LiClO4/acetonitrile. We observed a contrast (Δ%T) of
52.8% at 600 nm for PEDOT deposited on the composite film,
which is slightly larger than the sample (49.3%) on the ITO
electrode. The slightly higher contrast resulted from the better
transparency of the Au-MWCNT/PEDOT:PSS at 600 nm
(Figure 4a). The coloration efficiency is the most important
parameter for electrochromic materials. Here, we also study the
effect of the transparent electrode on the coloration efficiency
(CE). The changes in optical density (ΔOD) as a function of
charge ingress or egress are shown in Figure 8c at a
monochromatic wavelength of 600 nm. Via calculation of the
slope of the plot of ΔOD versus charge, the CE of PEDOT can

Figure 7. Application of the Au-MWCNT/PEDOT:PSS composite for flexible organic solar cells. (a) Measurement of the value of the work function
of the composite film. (b) Energy level diagrams of the P3HT:PCBM solar cell featuring a Au-MWCNT/PEDOT:PSS-based transparent electrode.
(c) J−V characteristics of P3HT:PCBM solar cells. (d) Effect of bending cycle on cell performance. The results indicate that the Au-MWCNT/
PEDOT:PSS can be used as a flexible transparent electrode for organic solar cells.
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be determined. As shown in Figure 8c, the calculated CEs of
PEDOT deposited on Au-MWCNT/PEDOT:PSS and ITO are
154 and 164 cm2/C, respectively. The comparable CE for the
PEDOT on our composite film suggests that the composite can
transfer charge uniformly. Moreover, it dose not consume
additional injected or ejected charge, leading to a lower CE.
The durability of the composite in aqueous media was also
evaluated by measuring the electrochromic stability. Figure 8d
demonstrates the transmittance attenuation for the PEDOT on
the conductive composites as a function of cycling number
between 1.0 and −1.0 V. After 200 double switches in the
electrolyte, we observed an attenuation of transmittance of only
3%. These results indicate the Au-MWCNT after the plasma
treatment can form a strongly mechanical conductive network
within PEDOT:PSS. This can effectively reduce the charge
transfer barrier and enhance the adhesion with the substrate
and solvent resistance.

4. CONCLUSION
A novel hybrid transparent conductive material composed of
Au-decorated MWCNT and PEDOT:PSS has been successfully
synthesized. The Au NPs grown on the MWCNT can be
covered with larger NPs via MW plasma irradiation. The
sintered Au NPs connect the MWCNT within PEDOT:PSS
forming a three-dimensional network to reduce the contact
resistance. As a result, the Au-MWCNT/PEDOT:PSS
composites exhibit a low sheet resistance of 51 Ω/sq with a
high transparency of 86.2% at 550 nm. The composites are
readily employed as transparent electrodes in flexible solar cells

exhibiting competitive PCE with those of the ITO-based
devices. In addition, the composite films are also integrated into
the electrochromic devices showing high performance and
durability in aqueous media. These properties make it well-
suited for use as a conductive platform for next-generation
flexible electronics.
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